Voice assistant solutions

Next-Generation Voice Assisted Solutions

In recent years, voice technology has steadily increased in popularity, from voice control in vehicles to smart speakers in homes. A voice assistant solution is built using machine learning, NLP (Natural Language Processing), and voice recognition technology. These solutions merge cloud computing to combine AI and can converse with the end users in natural language. As modern buyers continue to want simplicity and user-friendly voice-enabled interactions, businesses now consider designing and implementing a conversational-first approach to forge closer bonds with them. According to Market Research Future, the global voice assistant market is predicted to reach USD 30.74 Billion by the end of 2030, with a CAGR of 31.2 % from 2020 to 2030. Voice assistants have a bright future and will get better at understanding the context of instructions, phrases, meanings and will be able to help us in a unique and more customized manner.

Voice Assisted Solution Model

A voice assistant model uses voice recognition and synthesis to listen to specific voice commands and perform specific functions as requested by the user. A voice assistant system comprises different stages starting with automatic speech recognition which entitles the device to identify and translate voice from speech to text. Afterward, text interpretation is performed using NLP (Natural Language Processing) which analyses speech in text form and understands the user’s intent, once the intent has been identified the desired action is carried through API (Application Programming Interface) connection and returned to the user as feedback using Text-to-Speech (TTS) technology.

Voice Assistant Solution Model

With the emergence of advanced AI technologies, companies may create synthetic speech that sounds like a human voice to resolve customer queries more effectively. Businesses across a variety of industries, including retail, automotive, media & entertainment, and healthcare, are realising the benefits of the technology and are using it to provide better, and more individualized customer experiences.

Applications of Voice Assisted Solutions

Automotive
Automakers are ensuring that their vehicles have the latest speech AI technology to suit customer demands and expectations, as more consumers desire in-car voice assistants. Voice assistant system can be easily integrated into the vehicle’s HMI (Human Machine Interface) through which different vehicle functions like music playback, windows adjustments, temperature control, and smartphone connectivity can be operated quite conveniently. With the use of voice assistant setting up the destination in the navigation system can be performed by voice commands, it also assists in calling other people without the use of any physical interference, as well as operating entertainment services that reduce the chances of driver distraction which lowers the number of accident cases. In addition, the voice assistant can communicate information to the victim’s family and the closest medical facility in the event of an accident. As a result, the level of safety is increased. With the advancement of AI in the fields of text-to-speech, NLP automakers can use different modes of voice as instructions depending on the driver’s situation. Auto manufacturers who want to stay ahead of the competition should seriously consider investing in voice AI technology.

Media & Entertainment
The media & entertainment sector is utilising voice assistants to offer people a tailored experience, rapid access to their favourite media, and quick, relevant search results. Voice assistants facilitate a rich and immersive experience with features like media asset management and interactive media where with voice instructions one can access all the media content. Users of voice assistants can control music, adjust the volume up and down, and skip tracks. In the case of smart TVs equipped with cutting-edge speech AI technology, they can comprehend difficult and compound inquiries as well as remember questions that have already been asked, making them more interesting and conversational. Voice assistants are also being used by entertainment apps to provide hands-free, rapid, and convenient user experiences for either the entire app or a specific feature.

Home Automation
It is now possible to use voice-controlled systems and devices to automate routine tasks because of technological breakthroughs. Having voice-controlled home automation gives you the ability to group all your home’s smart gadgets. Along with providing a remote-control option for entertainment devices like radios, music and songs, audiobooks, podcasts, etc., it assists with managing tasks like turning on and off the lights, fans, AC, door locks, curtains, etc. Home automation systems like Alexa and Google Home boost overall efficiency and can connect with several devices hassle-free. In addition, the integration of voice commands into the installation of such home automation with voice control offers greater security alternatives by streamlining the available security options. It helps reduce human efforts, especially for the elderly and disabled people.

Consumer Industry
As more voice-activated devices enter the market and more electronics makers start to integrate voice capability into current products and services, the popularity of voice assistants in the consumer industry is only anticipated to increase. Consumers will increasingly prefer using this technology to engage with their devices such as refrigerators, smart TVs, air conditioners, and all kinds of gadgets it comes up with in this era. Voice integrations make entertainment and social interaction more accessible to those with physical disabilities. Through information lookups, reminders, and routines to make calls, read/send emails, etc., they can help persons with memory impairments. Some of the areas under consumer electronics that are rapidly becoming popular with the inception of voice technology are smart wearable & fitness tracking, smart security & surveillance system, and digital personal assistants.

Voice assistants are becoming increasingly popular due to their capabilities that cut down on handling time and costs while maintaining accuracy and precision. They are getting better at decoding questions to provide timely, relevant answers. There are numerous opportunities for far richer and more in-depth interactions with clients. Voice assistant is becoming a technology that can’t be missed out, especially with the eventual rollout of 5G and the advancement in machine learning.

At Softnautics, we provide AI engineering and machine learning services and solutions with expertise on edge platforms (TPU, Rpi, FPGA), NN compilers for the edge, cloud platforms accelerators like AWS, Azure, AMD, and many more targeted for domains like Automotive, Multimedia, Industrial IoT, Consumer, and Security-Surveillance. Softnautics helps businesses in building high-performance cloud and edge-based ML solutions like key-phrase/voice command detection, VUI (Voice User Interface) design, hand gesture recognition, object/lane detection, and more across various platforms.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”11388″]

 

Next-Generation Voice Assisted Solutions Read More »

Model Compression Techniques for Edge AI

Model Compression Techniques for Edge AI

Deep learning is growing at a tremendous pace in terms of models and their datasets. In terms of applications, the deep learning market is dominated by image recognition followed by optical character recognition, and facial and object recognition. According to Allied market research, the global deep learning market was valued at$ 6.85 billion in 2020, and it is predicted to reach $ 179.96 billion by 2030, with a CAGR of 39.2% percent from 2021 to 2030. Well, at one point in time it was believed that large and complex models perform better, but now it’s almost a myth. With the evolution of Edge AI, more and more techniques came in to convert a large and complex model into a simple model that can be run on edge and all these techniques combine to perform model compression.

What is Model Compression?

Model Compression is a process of deploying SOTA (state of the art) deep learning models on edge devices that have low computing power and memory without compromising on models’ performance in terms of accuracy, precision, recall, etc. Model Compression broadly reduces two things in the model viz. size and latency. Size reduction focuses on making the model simpler by reducing model parameters, thereby reducing RAM requirements in execution and storage requirements in memory. Latency reduction refers to decreasing the time taken by a model to make a prediction or infer a result. Model size and latency often go together, and most techniques reduce both.

Popular Model Compression Techniques

Pruning
Pruning is the most popular technique for model compression which works by removing redundant and inconsequential parameters. These parameters in a neural network can be connectors, neurons, channels, or even layers. It is popular because it simultaneously decreases models’ size and improves latency.

Pruning

Pruning can be done while we train the model or even post-training. There are different types of pruning techniques which are weight/connection pruning, Neuron Pruning, Filter Pruning, and Layer pruning..

Quantization:
As we remove neurons, connections, filters, layers, etc. in pruning to lower the number of weighted parameters, the size of the weights is decreased during quantization. Values from a large set are mapped to values in a smaller set in this process. In comparison to the input network, the output network has a narrower range of values but retains most of the information. For further details on this method, you may read our in-depth article regarding model quantization here.

Knowledge Distillation
In the Knowledge distillation process, we train a complex and large model on a very large dataset. After fine-tuning the large model, it works well on unseen data. Once achieved, this knowledge is transferred to smaller Neural Networks or models. Both, the teacher network (a larger model) and the student network (a smaller model) are used. There exist two aspects here which is, knowledge distillation in which we don’t tweak the teacher model whereas in transfer learning we use the exact model and weight, alter the model to some extent, and adjust it for the related task.

knowledge distillation system

The knowledge, the distillation algorithm, and the teacher-student architecture models are the three main parts of a typical knowledge distillation system, as shown in the diagram above.

Low Matrix Factorization:
Matrices form the bulk of most deep neural architectures. This technique aims to identify redundant parameters by applying matrix or tensor decomposition and making them into smaller matrices. This technique when applied on dense DNN (Deep Neural Networks) decreases the storage requirements and factorization of CNN (Convolutional Neural Network) layers and improves inference time. A weight matrix A with two dimensions and having a rank r can be decomposed into smaller matrices as below.

Low Matrix Factorization

Model accuracy and performance highly depend on proper factorization and rank selection. The main challenge in the low-rank factorization process is harder implementation and it is computationally intensive. Overall, factorization of the dense layer matrices results in a smaller model and faster performance when compared to full-rank matrix representation.

Due to Edge AI, model compression strategies have become incredibly important. These methods are complementary to one another and can be used across stages of the entire AI pipeline. Popular frameworks like TensorFlow and Pytorch now include techniques like Pruning and Quantization. Eventually, there will be an increase in the number of techniques used in this area.

At Softnautics, we provide AI Engineering and Machine Learning services with expertise on cloud platforms accelerators like Azure, AMD, edge platforms (FPGA, TPU, Controllers), NN compiler for the edge, and tools like Docker, GIT, AWS DeepLens, Jetpack SDK, TensorFlow, TensorFlow Lite, and many more targeted for domains like Multimedia, Industrial IoT, Automotive, Healthcare, Consumer, and Security-Surveillance. We collaborate with organizations to develop high-performance cloud-to-edge machine learning solutions like face/gesture recognition, people counting, object/lane detection, weapon detection, food classification, and more across a variety of platforms.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”12026″]

 

Model Compression Techniques for Edge AI Read More »

Embedded ML

An overview of Embedded Machine Learning techniques and their associated benefits

Owing to revolutionary developments in computer architecture and ground-breaking advances in AI & machine learning applications, embedded systems technology is going through a transformational period. By design, machine learning models use a lot of resources and demand a powerful computer infrastructure. They are therefore typically run-on devices with more resources, like PCs or cloud servers, where data processing is efficient. Machine learning applications, ML frameworks, and processor computing capacity may now be deployed directly on embedded devices, thanks to recent developments in machine learning, and advanced algorithms. This is referred to as Embedded Machine Learning (E-ML).

The processing is moved closer to the edge, where the sensors collect data, using embedded machine learning techniques. This aids in removing obstacles like bandwidth and connection problems, security breaches by data transfer via the internet, and data transmission power usage. Additionally, it supports the use of neural networks and other machine learning frameworks, as well as signal processing services, model construction, gesture recognition, etc. Between 2021 to 2026, the global market for embedded AI is anticipated to expand at a 5.4 percent CAGR and reach about USD 38.87 billion, as per the maximize market research group reports.

The Underlying Concept of Embedded Machine Learning

Today, embedded computing systems are quickly spreading into every sphere of the human venture, finding practical use in things starting from wearable health monitoring systems, wireless surveillance systems, networked systems found on the internet of things (IoT), smart appliances for home automation to antilock braking systems in automobiles. The Common ML techniques used for embedded platforms include SVMs (Support Vector Machine), CNNs (convolutional neural network), DNNs (Deep Neural networks), k-NNs (K-Nearest Neighbour), and Naive Bayes. Large processing and memory resources are needed for efficient training and inference using these techniques. Even with deep cache memory structures, multicore improvements, etc., general-purpose CPUs are unable to handle the high computational demands of deep learning models. The constraints can be overcome by utilizing resources such as GPU and TPU processors. This is mainly because sophisticated linear algebraic computations, such as matrix and vector operations, are a component of non-trivial deep learning applications. Deep learning algorithms can be run very effectively and quickly on GPUs and TPUs, which makes them ideal computing platforms.

Running machine learning models on embedded hardware is referred to as embedded machine learning. The latter works according to the following fundamental precept: While model execution and inference processes take place on embedded devices, the training of ML models like neural networks takes place on computing clusters or in the cloud. Contrary to popular belief, it turns out that deep learning matrix operations can be effectively carried out on hardware with constrained CPU capabilities or even on tiny 16-bit/32-bit microcontrollers.

The type of embedded machine learning that uses extremely small pieces of hardware, such as ultra-low-power microcontrollers, to run ML models is called TinyML.Machine Learning approaches can be divided into three main categories: reinforcement learning, unsupervised learning, and supervised learning. In supervised learning, labelled data can be learned; in unsupervised learning, hidden patterns in unlabelled data can be found; and in reinforcement learning, a system can learn from its immediate environment by a trial-and-error approach. The learning process is known as the model’s “training phase,” and it is frequently carried out utilizing computer architectures with plenty of processing power, like several GPUs. The trained model is then applied to new data to make intelligent decisions after learning. The inference phase of the implementation is what is referred to as this procedure. IoT and mobile computing devices, as well as other user devices with limited processing resources, are frequently meant to do the inference.

 

Machine Learning Techniques

Application Areas of Embedded Machine Learning

Intelligent Sensor Systems
The effective application of machine learning techniques within embedded sensor network systems is generating considerable interest. Numerous machine learning algorithms, including GMMs (Gaussian mixture model), SVMs, and DNNs, are finding practical uses in important fields such as mobile ad hoc networks, intelligent wearable systems, and intelligent sensor networks.

Heterogeneous Computing Systems
Computer systems containing multiple types of processing cores are referred to as heterogeneous computing systems. Most heterogeneous computing systems are employed as acceleration units to shift computationally demanding tasks away from the CPU and speed up the system. Heterogeneous Multicore Architecture is an area of application where to speed up computationally expensive machine learning techniques, the middleware platform integrates a GPU accelerator into an already-existing CPU-based architecture thereby enhancing the processing efficiency of ML data model sets.

Embedded FPGAs
Due to their low cost, great performance, energy economy, and flexibility, FPGAs are becoming increasingly popular in the computing industry. They are frequently used to pre-implement ASIC architectures and design acceleration units. CNN Optimization using FPGAs and OpenCL-based FPGA Hardware Acceleration are the areas of application where FPGA architectures are used to speed up the execution of machine learning models.

Benefits

Efficient Network Bandwidth and Power Consumption
Machine learning models running on embedded hardware make it possible to extract features and insights directly from the data source. As a result, there is no longer any need to transport relevant data to edge or cloud servers, saving bandwidth and system resources. Microcontrollers are among the many power-efficient embedded systems that may function for long durations without being charged. In contrast to machine learning application that is carried out on mobile computing systems which consumes a substantial amount of power, TinyML can increase the power autonomy of machine learning applications to a greater extent for embedded platforms.

Comprehensive Privacy
Embedded machine learning eliminates the need for data transfer and storage of data on cloud servers. This lessens the likelihood of data breaches and privacy leaks, which is crucial for applications that handle sensitive data such as personal information about individuals, medical data, information about intellectual property (IP), and classified information.

Low Latency
Embedded ML supports low-latency operations as it eliminates the requirement of extensive data transfers to the cloud. As a result, when it comes to enabling real-time use cases like field actuating and controlling in various industrial scenarios, embedded machine learning is a great option.

Embedded machine learning applications are built using methods and tools that make it possible to create and deploy machine learning models on nodes with limited resources. They offer a plethora of innovative opportunities for businesses looking to maximize the value of their data. It also aids in the optimization of the bandwidth, space, and latencies of their machine learning applications.

Softnautics AI/ML experts have extensive expertise in creating efficient ML solutions for a variety of edge platforms, including CPUs, GPUs, TPUs, and neural network compilers. We also offer secure embedded systems development and FPGA design services by combining the best design methodologies with the appropriate technology stacks. We help businesses in building high-performance cloud and edge-based ML solutions like object/lane detection, face/gesture recognition, human counting, key-phrase/voice command detection, and more across various platforms.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”11388″]

An overview of Embedded Machine Learning techniques and their associated benefits Read More »

Developing TPU based AI solutions using TensorFlow Lite

Developing TPU based AI solutions using TensorFlow Lite

AI has become ubiquitous today from personal devices to enterprise applications, you see them everywhere. The advent of IoT clubbed with rising demand for data privacy, low power, low latency, and bandwidth constraints has increasingly pushed for AI models to be running at the edge instead of the cloud. According to Grand View Research, the global edge artificial intelligence chips market was valued at USD 1.8 billion in 2019 and is expected to grow at a CAGR of 21.3 percent from 2020 to 2027. On this onset, Google introduced Edge TPU, also known as Coral TPU, which is its purpose-built ASIC for running AI at edge. It’s designed to give an excellent performance while taking up minimal space and power. When we train an AI model, we end up with AI models that have high storage requirements and GPU processing power. We cannot execute them on devices that have low memory and processing footprints. TensorFlow Lite is useful in this situation. TensorFlow Lite is an open-source deep learning framework that runs on the Edge TPU and allows for on-device inference and AI model execution. Also note that TensorFlow Lite is only for executing inference on the edge, not for training a model. For training an AI model, we must use TensorFlow.

Combining Edge TPU and TensorFlow Lite

When we talk about deploying an AI model on Edge TPU, we just cannot deploy any AI model.
The Edge TPU supports NN (Neural Network) operations and designs to enable high-speed neural network performance with low power consumption. Apart from specific networks, it only supports 8-bit quantized and compiled TensorFlow Lite models for Edge TPU.

For a quick summary, TensorFlow Lite is a lightweight version of TensorFlow specially designed for mobile and embedded devices. It achieves low latency results with a small storage size. There is a TensorFlow Lite converter that allows converting a TensorFlow-based AI model file (. pb) to a TensorFlow Lite file (.tflite). Below is a standard workflow for deploying applications on Edge TPU

Let’s look at some interesting real-world applications that can be built using TensorFlow Lite on edge TPU.

Human Detection and Counting

This solution has so many practical applications, especially in malls, retail, government offices, banks, and enterprises. One may wonder what one can do with detecting and counting humans. Data now has the value of time and money. Let us see how the insights from human detection and counting can be used.

Estimating Footfalls

For the retail industry, this is important as it gives an idea if their stores are doing well. Whether their displays are attracting customers to enter the shops. It also helps them to know if they need to increase or decrease support staff. For other organizations, they help in taking adequate security measures for people.

Crowd Analytics and Queue Management

For govt offices and enterprises, queue management via human detection and counting helps them manage longer queues and save people’s time. Studying queues can attribute to individual and organizations’ performance. Crowd detection can help analyze crowd alerts for emergencies, security incidents, etc., and take appropriate actions. Such solutions give the best results when deployed on edge, as required actions can be taken close to real-time.

Age and Gender-based Targeted Advertisements

This solution mainly has practical applications in the retail and advertisement industry. Imagine you walking towards the advertisement display which was showing a women’s shoe ad and then suddenly the advertisement changes to a male’s shoe ad as it determined you being male. Targeted advertisements help retailers and manufacturers target their products better and create brand awareness that a normal person would never get to see in his busy life.

This cannot be restricted to only advertisements, age and gender detection can also help businesses in taking quick decisions by managing appropriate support staff in retail stores, what age and gender people prefer visiting your store, businesses, etc. All this is more powerful and effective if you are very quick to determine and act. So, even more, a reason to have this solution on Edge TPU.

Face Recognition

The very first face recognition system was built in 1970, and to date this is still being developed, being made more robust and effective. The main advantage of having face recognition on edge is real-time recognition. Another advantage is having face encryption and feature extraction on edge, and just sending encrypted and extracted data to the cloud for matching, thereby protecting PII level privacy of face images (as you don’t save face images on edge and cloud) and complying with stringent privacy laws.

Edge TPU combined with the TensorFlow Lite framework opens several edges AI applications opportunities. As the framework is open-source the Open-Source Software (OSS) community also supports it, making it even more popular for machine learning use cases. The overall platform of TensorFlow Lite enhances the environment for the growth of edge applications for embedded and IoT devices.

At Softnautics, we provide AI engineering and machine learning services and solutions with expertise on edge platforms (TPU, Rpi, FPGA), NN compiler for the edge, cloud platforms accelerators like AWS, Azure, AMD, and tools like TensorFlow, TensorFlow Lite, Docker, GIT, AWS DeepLens, Jetpack SDK, and many more targeted for domains like Automotive, Multimedia, Industrial IoT, Healthcare, Consumer, and Security-Surveillance. Softnautics helps businesses in building high-performance cloud and edge-based ML solutions like object/lane detection, face/gesture recognition, human counting, key-phrase/voice command detection, and more across various platforms.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”12026″]

Developing TPU based AI solutions using TensorFlow Lite Read More »

Machine Learning Based Facial Recognition and Its Benefits

Machine Learning Based Facial Recognition and Its Benefits

Machine Learning based facial recognition is a method of utilizing the face to identify or confirm one’s identity. Persons can be identified in pictures, films, or real time using facial recognition technology. Facial recognition has traditionally functioned in the same way as other biometric methods including voice recognition, eye irises, and fingerprint identification.

The growing use of facial recognition technology in a variety of applications is propelling the industry forward. In case of security, authorities are employing this technology to verify a passenger’s identity, particularly at airports. Face recognition software is also being used by law enforcement agencies to scan faces taken on CCTV and locate the suspect. Smartphones are another area of application where the technology has seen widespread adoption where the software is used to unlock the phone and verify payment information. As in the case of automotives self-driving cars are the focus of using this technology to unlock the car and act as the key to start/ stop the car. According to a report published by markets & markets group, the global facial recognition market is expected to grow at a CAGR of 17.2 percent over the forecast period, from USD 3.8 billion in 2020 to USD 8.5 billion in 2025.

Facial Recognition Technology Working Mechanism

A computer examines visual data and searches for a specified set of indicators, such as a person’s head shape, depth of their eyelids, etc. A database of facial markers is built, and an image of a face that matches the database’s essential threshold of resemblance suggests a possible match. Face recognition technologies, such as machine vision, modelling and reconstruction, and analytics, require the utilization of advanced algorithms in the areas of Machine Learning – Deep Learning and CNN (Convolutional Neural Network), which is growing at an exponential rate.

As facial recognition technology has progressed, a variety of systems for mapping faces and storing facial data have evolved based on Computer Vision, Deep Learning each with various degrees of accuracy and efficiency. In general, there exist 3 methods, which are as follows.

  • Traditional facial recognition
  • Biometric facial recognition
  • 3D facial recognition
Traditional Facial Recognition

There are two methods to it. One is holistic facial recognition, in which an identifier’s complete face is analysed for identifying traits that match the target. Feature-based facial recognition, on the other hand, separates the relevant recognition data from the face before applying it to a template that is compared against prospective matches.

Detection – Facial recognition software detects the identifier’s face in an image
Analysis – Algorithms determine the unique facial biometrics and features, such as the distance between nose and mouth, size of eyelids, forehead, and other characteristics
Identification – The software can now compare the target faceprint to other faceprints in the database to find a match

Overview of Facial Recognition System

Biometric Facial Recognition

Skin and face biometrics are a growing topic in the field of facial recognition that has the potential to improve the accuracy of facial recognition technologies dramatically. A skin texture analysis examines a specific area of a subjects’ skin, using an algorithm to take very precise measurements of wrinkles, textures, and pores.

3D Facial Recognition

It’s a technique that uses the three-dimensional geometry of the human face to create a three-dimensional model of the facial surface. It employs specific aspects of the face to identify the subject, such as the curvature of the eye socket, nose, and chin, where hard tissue and bone are most visible. These regions are all distinct from one another and do not change throughout time. 3D face recognition can achieve more accuracy than its 2D counterpart by analysing the geometry of hard properties on the face. In the 3D facial recognition technology, sensors are employed to capture the shape of the face with more precision. Unlike standard facial recognition systems, 3D facial recognition is unaffected by light, and scans can even be done in complete darkness. Another advantage of 3D facial recognition is that it can recognize a target from many angles rather than just a straight-on appearance.

Applications of Facial Recognition Technology Retail

Face recognition in retail opens an ample number of possibilities for elevating the customer experience. Store owners can collect data about their customers’ visits (such as their reactions to specific products and services) and then conclude how to personalize their offerings. They can offer unique product packages to the clients based on their previous purchasing history and insights. Vending machines in Japan, for example, proposes drinks to customers based on their gender and age using facial recognition technology.

Healthcare

It has enhanced patient experience and reduced efforts for healthcare professionals by improving security and patient identification, as well as better patient monitoring and diagnosis. When a patient walks into the clinic, the facial recognition system scans their face and compares it to a database held by the hospital. Without the need for paperwork or other identification documents, the patient’s identity and health history are verified in real-time.

Security Companies

Nowadays machines that can effectively recognize individuals open a host of options for the security industry, the most important of which is the potential to detect illicit access to areas where non-authorized people are prohibited. Artificial intelligence-powered face recognition software can help spot suspicious behaviour, track down known offenders, and keep people safe in crowded locations.

Fleet Management Services

Facial recognition could be used in fleet management to give alerts to unauthorized personnel attempting to obtain access to vehicles, preventing theft. The fact that distraction is the major cause of accidents, which is due to the usage of electronic gadgets. When a driver’s eyes aren’t on the road, facial recognition technology may be designed to detect it. It may also be trained to detect eyes that indicate an intoxicated or tired driver, improving the safety of driver & fleet vehicles.

Benefits of Facial Recognition Technology

With constantly evolving capabilities, it will be fascinating to see where Machine Learning based Facial Recognition technology will reach over next decade. The amount and quality of image data required to train any facial recognition program are critical to its performance. Many examples are required, and each one necessitates a significant number of pictures to develop a thorough comprehension of the face.

At Softnautics we offer Machine Learning services to assist organizations in the development of futuristic AI solutions like facial recognition systems, Machine Learning/Deep Learning algorithms that compare facial features to several data sets using random and view-based features, utilizing complex mathematical representations and matching methods. We develop powerful Machine Learning models for feature analysis, neural networks, eigenfaces, and automatic face recognition. We provide Machine Learning services and solutions with expertise on edge platforms (TPU, RPi), NN compiler for the edge, Computer Vision, Machine Vision, tools like TensorFlow, TensorFlow Lite, Docker, GIT, AWS deepLens, Jetpack SDK, and many more targeted for domains like Automotive, Multimedia, Industrial IoT, Healthcare, Consumer, and Security-Surveillance.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

 

[elementor-template id=”11388″]

Machine Learning Based Facial Recognition and Its Benefits Read More »

Model Quantization for Edge AI

Model Quantization for Edge AI

Deep learning is witnessing a growing history of success, however, the large/heavy models that must be run on a high-performance computing system are far from optimal. Artificial intelligence is already widely used in business applications. The computational demands of AI inference and training are increasing. As a result, a relatively new class of deep learning approaches known as quantized neural network models has emerged to address this disparity. Memory has been one of the biggest challenges for deep learning architectures. It was an evolution of the gaming industry that led to the rapid development of hardware leading to GPUs that enables 50 layer networks of today. Still, the hunger for memory by newer and powerful networks is now pushing for evolutions of Deep Learning model compression techniques to put a leash on this requirement, as AI is quickly moving towards edge devices to give near to real-time results for captured data. Model quantization is one such rapidly growing technology that has allowed deep learning models to be deployed on edge devices with less power, memory, and computational capacity than a full-fledged computer.

How did AI Migrate from Cloud to Edge?

A computer examines visual data and searches for a specified set of indicators, such as a person’s head shape, depth of their eyelids, etc. A database of facial markers is built, and an image of a face that matches the database’s essential threshold of resemblance suggests a possible match. Face recognition technologies, such as machine vision, modelling and reconstruction, and analytics, require the utilization of advanced algorithms in the areas of Machine Learning – Deep Learning and CNN (Convolutional Neural Network), which is growing at an exponential rate.

Edge AI mostly works in a decentralized fashion. Small clusters of computer devices now work together to drive decision-making rather than going to a large processing center. Edge computing boosts the device’s real-time response significantly. Another advantage of edge AI over cloud AI is the lower cost of operation, bandwidth, and connectivity. Now, this is not easy as it sounds. Running AI models on the edge devices while maintaining the inference time and high throughput is equally challenging. Model Quantization is the key to solving this problem.

The need for Quantization?

Now before going into quantization, let’s see why neural network in general takes so much memory.

Elements of ANN

As shown in the above figure a standard artificial neural network will consist of layers of interconnected neurons, with each having its weight, bias, and activation function. These weights and biases are referred to as the “parameters” of a neural network. This gets stored physically in memory by a neural network. 32-bit floating-point values are a standard representation for them allowing a high level of precision and accuracy for the neural network.

Getting this accuracy makes any neural network take up much memory. Imagine a neural network with millions of parameters and activations, getting stored as a 32-bit value, and the memory it will consume. For example, a 50-layer ResNet architecture will contain roughly 26 million weights and 16 million activations. So, using 32-bit floating-point values for both the weights and activations would make the entire architecture consume around 168 MB of storage. Quantization is the big terminology that includes different techniques to convert the input values from a large set to output values in a smaller set. The deep learning models that we use for inferencing are nothing but the matrix with complex and iterative mathematical operations which mostly include multiplications. Converting those 32-bit floating values to the 8 bits integer will lower the precision of the weights used.

Quantization Storage Format 

Due to this storage format, the footprint of the model in the memory gets reduced and it drastically improves the performance of models. In deep learning, weights, and biases are stored as 32-bit floating-point numbers. When the model is trained, it can be reduced to 8-bit integers which eventually reduces the model size. One can either reduce it to 16-bit floating points (2x size reduction) or 8-bit integers (4x size reduction). This will come with a trade-off in the accuracy of the model’s predictions. However, it has been empirically proven in many situations that a quantized model does not suffer from a significant decay or no decay at all in some scenarios.

Quantized Neural Network model 

How does the quantization process work?

There are 2 ways to do model quantization as explained below:

Post Training Quantization:

As the name suggests, Post Training Quantization is a process of converting a pre-trained model to a quantized model viz. converting the model parameters from 32-bit to 16-bit or 8-bit. It can further be of 2 types. One is Hybrid Quantization, where you just quantize weights and do not touch other parameters of the model. Another is Full Quantization, where you quantize both weights and parameters of the model.

Quantization Aware Training:

As the name suggests, here we quantize the model during the training time. Modifications are done to the network before initial training (using dummy quantize nodes) and it learns the 8-bit weights through training rather than going for conversion later.

Benefits and Drawbacks of Quantization

Quantized neural networks, in addition to improving performance, significantly improve power efficiency due to two factors: lower memory access costs and better computation efficiency. Lower-bit quantized data necessitates less data movement on both sides of the chip, reducing memory bandwidth and conserving a great deal of energy.

As mentioned earlier, it is proven empirically that quantized models don’t suffer from significant decay, still, there are times when quantization greatly reduces models’ accuracy. Hence, with a good application of post quantization or quantization-aware training, one can overcome this drop inaccuracy.

Model quantization is vital when it comes to developing and deploying AI models on edge devices that have low power, memory, and computing. It adds the intelligence to IoT eco-system smoothly.

At Softnautics, we provide AI and Machine Learning services and solutions with expertise on cloud platforms accelerators like Azure, AMD, edge platforms (TPU, RPi), NN compiler for the edge, and tools like Docker, GIT, AWS DeepLens, Jetpack SDK, TensorFlow, TensorFlow Lite, and many more targeted for domains like Multimedia, Industrial IoT, Automotive, Healthcare, Consumer, and Security-Surveillance. We can help businesses to build high-performance cloud-to-edge Machine Learning solutions like face/gesture recognition, human counting, key-phrase/voice command detection, object/lane detection, weapon detection, food classification, and more across various platforms.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”12026″]

Model Quantization for Edge AI Read More »

The Rise of Containerized Application for Accelerated AI Solutions

The Rise of Containerized Application for Accelerated AI Solutions

At the end of 2021, the artificial intelligence market was estimated to be a value of $58.3 billion. This figure is bound to increase and is estimated to grow tenfold over the next 5 years and reach $309.6 billion by 2026. Given such popularity of AI technology, companies extensively want to build and deploy solutions with AI applications for their businesses. In today’s technology-driven world AI has become an integral part of our life. As per a report by McKinsey, AI adoption is continuing its steady rise: 56% of all respondents report AI adoption in at least one business function, up from 50% in 2020. This increase in adoption is due to evolving strategies for building and deploying AI applications. Various strategies are evolving to build and deploy AI models. Container applications are one such strategy. MLOps are becoming increasingly stable. If you are unfamiliar with Machine Learning operations, then it is a collection of principles, practices, and technologies that help to increase the efficiency of machine learning workflows. It is based on DevOps, and just as DevOps has streamlined the SDLC from development to deployment, MLOps accomplish the same for machine learning applications. Containerization is one of the most intriguing and emerging technologies for developing and delivering AI applications. A container is a standard unit of software packaging that encapsulates code and all its dependencies in a single package, allowing programs to move from one computing environment to another rapidly and reliably. Docker is at the forefront of application containerization.
What Are Containers?
Containers are logical boxes that contain everything an application requires to execute. The operating system, application code, runtime, system tools, system libraries, binaries, and other components are all included in this software bundle. Optionally, some dependencies might be included or excluded based on the availability of specific hardware. These containers run directly within the host machine kernels. The container will share the host machine’s resources (like CPU, disks, memory, etc.) and eliminate the extra load of a hypervisor. This is the reason why containers are “lightweight “.
Why Are Containers So Popular?
  • First, they are lightweight since the container shares the machine operating system kernels. It doesn’t need an entire operating system in place to run the application. VirtualBox, popularly known as VM’s, require installation of complete OS making them quite bulky.
  • Containers are portable and can easily be transported from one machine to another machine with all the required dependencies within it. They enable developers and operators to improve CPU and memory utilization of physical machines.
  • Among container technology, Docker is the most popular and widely used platform. Not only the Linux-powered Red Hat and Canonical have embraced Docker, but also companies like Microsoft, Amazon, and Oracle are relying on it. Today, almost all IT and cloud companies have adopted docker, and are widely used to provide their solution with all the dependencies.

Virtual Machines vs Containers

Is There Any Difference between Docker and Containers?
  • Docker has widely become a synonym for containers because it is open-source, has a huge community base, and is a quite stable platform. But container technology isn’t new, it has been incorporated into Linux in the form of LXC for more than 10 years, and similar operating-system-level virtualization has also been offered by FreeBSD jails, AIX Workload Partitions, and Solaris Containers.
  • Dockers can make the process easier by merging OS and package needs into a single package, which is one of the differences between containers and dockers.
  • We’re often perplexed as to why docker is employed in the field of data science and artificial intelligence, yet it’s mostly used in DevOps. ML and AI, like DevOps, have inter-OS dependencies. As a result, a single code can run on Ubuntu, Windows, AWS, Azure, Google Cloud, ROS, a variety of edge devices, or anywhere else.
Container Application for AI / ML:
Like any software development, AI applications also face SDLC challenges when assembled and run by various developers in a team or in collaboration with multiple teams. Due to the constant iterative and experimental nature of AI applications, there comes a point where the dependencies might wind up crisscrossing, causing inconveniences for other dependent libraries in the same project.
To Explain:
 

The need for Container Application for AI / ML

The issues are true, and as a result, there is a requirement for acceptable documentation of each step to follow if you’re presenting a project that requires a specific method of execution. Imagine you have multiple python virtual environments for different models of the same projects, and without updated documentation, you may wonder what are these dependencies for? Why do I get conflicts while installing newer libraries or updated models etc.? Developers constantly face this dilemma “It works on my machine” and constantly try resolving it.

Why it’s working on my machine

Using Docker, all of this can be made easier and faster. Containerization can help you save a lot of time updating documents and make the development and deployment of your program go more smoothly in the long term. Even by pulling multiple images which will be platform-agnostic, we can serve multiple AI models using docker containers.

The application written fully on the Linux platform can be run on the Windows platform using docker, which can be installed on a Windows workstation, making code deployment across platforms much easier.

 

Deployment of code using docker container

Benefits of Converting entire AI application development to deployment pipeline into a container:
  • Separate containers for each AI model for different versions of frameworks, OS, and edge devices/ platforms.
  • Having a container for each AI model for customization of deployments. Ex: One container is developer-friendly while another is user-friendly and requires no coding to use.
  • Individual containers for each AI model for different releases or environments in the AI project (development team, QA team, UAT (User Acceptance Testing), etc.)
Container applications truly accelerate the AI application development-deployment pipeline more efficiently and help maintain and manage multiple models for multiple purposes. Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions. Contact us at business@softnautics.com for any queries related to your solution or for consultancy. [elementor-template id=”12005″]

The Rise of Containerized Application for Accelerated AI Solutions Read More »

How Automotive HMI Solutions Enhances the In-Vehicle Experience

How Automotive HMI Solutions Enhances the In-Vehicle Experience?

With new-age technologies, customers now have higher expectations from their vehicles than ever before. Many are more concerned with in-car interfaces than with aesthetics or engine power. The majority of drivers desire a vehicle that makes their lives easier and supports their favourite smartphone apps. HMI (Human-Machine Interface) solutions for automobiles are features and components of car hardware and software that enable drivers and passengers to interact with the vehicle and the outside environment. Automotive HMI solutions improve driving experiences by allowing interaction with multi-touch dashboards, voice-enabled vehicle infotainment, control panels, built-in screens, and other features. They turn a vehicle into an ecosystem of interconnected parts that work together to make driving more personalized, adaptive, convenient, safe, and enjoyable. FuSa (ISO 26262) complied HMIs, which are powered by embedded sensors and smart systems, enabling the vehicle to respond to the driver’s intent and preferences. The global automotive HMI market size is projected to reach $33.59 billion by 2025 with a 9.90% growth rate as per the reports stated by the allied market research group.

Let us see a few applications of HMI in the automotive industry and how it enhances the driver/passenger experience.

Application & Benefits of HMI Solutions

 

Digital Instrumental Clusters

An instrument cluster is seen in every vehicle. An instrument cluster is a board that houses a variety of gauges and indicators. The instrument cluster is located right behind the steering wheel in the dashboard. To keep track of the vehicle’s status, the driver relies on the gauges and indicators. The modern car cockpit’s full electronics features are accessible through the digital instrument cluster. With the help of digital clusters vehicle driving information, such as speed, gasoline or charge level, trip distance calculator, route planning graphics, and so on, are combined with comfort information, such as outside temperature, clock, and air vent control. In addition, these digital clusters connect with the vehicle’s entertainment system to control multimedia, browse a phone book, make a call, and choose a navigation destination location. For instance, with use of a tachometer, indicates how fast the engine is turning.

Heads Up Display (HUD)

The Heads Up Display (HUD) is a transparent display fitted on the dashboard of a car that displays important information and data without diverting the driver’s attention away from their normal viewing position. Whether it’s speed or navigation, you have it all in one place. It gives critical information to drivers so that they are not distracted. Driver tiredness is reduced greatly since they are not forced to search for information within the vehicle, allowing them to concentrate more on the road.

 

Automotive HMI Solutions

Rear-Seats Entertainment (RSE)

Rear-Seats Entertainment (RSE) is a fast-growing car entertainment system that heavily relies on graphics, video, and audio processing. TV, DVD, Internet, digital radio, and other multimedia content sources are all integrated into RSE systems. One can keep the whole family engaged while traveling with the Rear-Seat Entertainment System. As the system is installed with wireless internet connectivity, they can surf the web, manage their playlist, interact with their social media platforms, and can get access to many more services.

Voice-Operated Systems

Modern voice-activated systems enable very natural communication with a vehicle. They can even understand accents and request additional information if necessary. This is made possible by the incorporation of Artificial Intelligence and Machine Learning, as well as general advances in Natural Language Processing and cognitive computing. Apple CarPlay apps, for example, will allow users to navigate, send and receive messages, make phone calls, play music, and listen to podcasts or audiobooks. All of this is controlled by voice command, ensuring a safer atmosphere and allowing the driver to concentrate on the road.

Haptic Technology

It’s also known as 3D touch, and it’s a technology that gives the user a tactile sensation by applying forces, vibrations, or motions. Haptics can be used, when consumers need to touch a screen or operate some functionalities. In its most basic form, a Haptic system will consist of a sensor – such as a touchpad key – that sends the input stimulus signal to a microprocessor. The microprocessor generates a suitable output, which is amplified and transmitted to the actuator. The actuator then produces the vibration that the system requires. Automobiles are also becoming increasingly adept at recognizing their surroundings and reacting properly by issuing safety warnings and alarms. Information can easily be communicated to the driver by vibration alerting, rather than unpleasant lights or noises. For instance, when a lane change is detected without warning, the steering wheel can produce vibrations to alert the driver. The seats can also vibrate to alert the driver if they move lanes too slowly. As in the case of General Motors in 2015 under the Chevrolet brand, they introduced the Safety Alert Seat. The car can share collision risk and lane departure with the driver via haptic input in the seat. It was one of the first automobiles that employ the touch sensation to communicate with the driver.

In-Car Connected Payments

The concept of connected commerce is gaining popularity and creating opportunities for brands and OEMs. In this case, users will receive an e-wallet with biometric identification verification that will allow them to pay for nearly anything on the go, including tolls, coffee, and other billers and creditors. While in-car payments may not appear to be a huge advantage at present, the future of such HMI services may include more than just parking and takeaway.

This cannot be restricted to only advertisements, age and gender detection can also help businesses in taking quick decisions by managing appropriate support staff in retail stores, what age and gender people prefer visiting your store, businesses, etc. All this is more powerful and effective if you are very quick to determine and act. So, even more, a reason to have this solution on Edge TPU.

Driver Monitoring System

A driver-monitoring system is a sophisticated safety system that uses a camera positioned on the dashboard to detect driver tiredness or distraction and deliver a warning or alert to refocus the driver’s attention on the road. If the system detects that the driver is distracted or drowsy, it may issue auditory alarms, and illuminate a visual signal on the dashboard to grab the driver’s attention. If the driver’s internal sensors indicate that he or she is distracted, and the vehicle’s external sensors indicate that a collision is imminent, the system can automatically apply the brakes, integrating inputs from both the interior and outside sensors.

The interface between the vehicle and the human has transformed as we move towards smart, interconnected, and autonomous mobility. Today’s HMI solutions not only improve in-vehicle comfort and convenience but also provide personalized experiences. These smart HMI solutions convey critical information which is important and needs attention from the driver. This reduces driver distraction and improves vehicle safety. HMI makes information processing and monitoring simple, intuitive, and dependable.

At Softnautics, we help automotive businesses to design HMI & Infotainment-based solutions such as gesture recognition, voice recognition, touch recognition, infotainment sub-menu navigation & selection, etc. involving FPGAs, CPUs, and Microcontrollers. Our team of experts has experience working with autonomous driving platforms, functions, middleware, and compliances like adaptive AUTOSAR, FuSa (ISO 26262), and MISRA C. We support our clients in the entire journey of intelligent automotive solution design.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”11388″]

How Automotive HMI Solutions Enhances the In-Vehicle Experience? Read More »

Role of Machine Vision in Manufacturing

Role of Machine Vision in Manufacturing

Machine Vision has exploded in popularity in recent years, particularly in the manufacturing industry. Companies can profit from the technology’s enhanced flexibility, decreased product faults, and improved overall production quality. The ability of a machine to acquire images, evaluate them, interpret (the situation), and then respond appropriately is known as Machine Vision. Smart cameras, image processing, and software are all part of the system. Vision technology can assist the manufacturing industry on many levels, thanks to significant advancements in imaging techniques, smart sensors, embedded vision, machine and supervised learning, robot interfaces, information transmission protocols, and image processing capabilities. By decreasing human error and ensuring quality checks on all goods traveling through the line, vision systems improve product quality. The Industrial Machine Vision market is valued at $53.38 billion by the end of 2028 and is expected to grow at a rate of 9.90% as per the reports stated by the Data Bridge Research group. Furthermore, an increase in the demand for inspection in the manufacturing units/factories with higher product quality measures, are likely to drive up demand for industrial Machine Vision under AI technologies and propel the market forward.

Applications of Machine Vision in Manufacturing

Predictive Maintenance
Manufacturing enterprises need to use a variety of large machinery to produce vast quantities of goods. To avoid equipment downtime, certain pieces of equipment must be monitored regularly. Examining each piece of equipment in a manufacturing facility by hand is not only time-consuming but also costly and gaffe. The idea was to only fix the equipment when it failed or became problematic. However, utilizing this technique to restore the equipment can have significant consequences for worker productivity, manufacturing quality, and cost. What if, on the other hand, manufacturing organizations could predict the state of their machinery’s operation and take proactive steps to prevent a breakdown from occurring? Let’s examine the situation where some production processes take place at high temperatures and in harsh environments, material deterioration and corrosion are prevalent. As a result, the equipment deforms. If not addressed promptly, this can lead to significant losses and the halting of the manufacturing process. Machine vision systems can monitor the equipment in real-time and predict maintenance based on multiple wireless sensors that provide data of a variety of parameters. If any variation from metrics indicates corrosion/over-heating, the vision systems can notify the appropriate supervisors, who can then take pre-emptive maintenance measures.

Goods Inspection

Manufacturing firms can use machine vision systems to detect faults, fissures, and other blemishes in physical products. Moreover, when the product is being built, these systems may easily check for accurate and reliable component or part dimensions. Images of goods will be captured by machine vision systems. The trained Machine Vision model will compare these photographs with acceptable data limit & will then pass or reject the goods. Any errors or flaws will be communicated via appropriate notification/alert. This is how manufacturers may use machine vision systems to do automatic product inspections and accurate quality control, resulting in increased customer satisfaction.

Scanning Barcodes

Manufacturers can automate the complete scanning process by equipping machine vision systems with enhanced capabilities such as Optical Character Recognition (OCR), Optical Barcode Recognition (OBR), Intelligent Character Recognition (ICR), etc. As in the case of OCR text contained in photographed labels, packaging, or documents can be retrieved and validated against databases. This way, products with inaccurate information can be automatically identified before they leave the factory, limiting the margin for error. This procedure can be used to apply information on drug packaging, beverage bottle labels, and food packaging information such as allergies or expiration dates.

Role of Machine Vision in Manufacturing

 

3D Vision System

A machine vision inspection system is used in a production line to perform tasks that humans find difficult. Here, the system creates a full 3D model of components and connector pins using high-resolution images.

As components pass through the manufacturing plant, the vision system captures images from various angles to generate a 3D model. When these images are combined and fed into AI algorithms, they detect any faulty threading or minor deviations from the design. This technology has a high level of credibility in manufacturing industries for automobiles, oil & gas, electronic circuits, and so on.

Vision-Based Die Cutting

The most widely used technologies for die-cutting in the manufacturing process are rotary and laser die-cutting. Hard tooling and steel blades are used in rotary, while high-speed laser light is used in laser. Although laser die cutting is more accurate, cutting tough materials is difficult, while rotary cutting can cut any material.

To cut any type of design, the manufacturing industry can use machine vision systems to do rotary die cutting that is as precise as laser cutting. After feeding the design pattern to the vision system, the system will direct the die cutting machine, whether laser or rotary, to execute accurate cutting.

As a result, Machine Vision with the help of AI and deep learning algorithms can transform the manufacturing industry’s efficiency and precision. Such models, when combined with controllers and robotics, can monitor everything that happens in the industrial supply chain, from assembly to logistics, with the least amount of human interaction. It eliminates the errors that come with manual procedures and allows manufacturers to focus on higher cognitive activities. As a result, Machine Vision has the potential to transform the way a manufacturing organization/unit does business.

At Softnautics, we help the manufacturing industry to design Vision-based ML solutions such as image classification & tagging, gauge meter reading, object tracking, identification, anomaly detection, predictive maintenance and analysis, and more. Our team of experts has experience in developing vision solutions based on Optical Character Recognition, NLP, Text Analytics, Cognitive Computing, etc.

Read our success stories related to Machine Learning expertise to know more about our services for accelerated AI solutions.

Contact us at business@softnautics.com for any queries related to your solution or for consultancy.

[elementor-template id=”11388″]

Role of Machine Vision in Manufacturing Read More »

Scroll to Top